Common Bean (Phaseolus vulgaris L.) NAC Transcriptional Factor PvNAC52 Enhances Transgenic Arabidopsis Resistance to Salt, Alkali, Osmotic, and ABA Stress by Upregulating Stress-Responsive Genes

Author:

Yu Song1ORCID,Wu Mingxu1,Wang Xiaoqin1,Li Mukai1,Gao Xinhan1,Xu Xiangru1,Zhang Yutao1,Liu Xinran1,Yu Lihe12,Zhang Yifei13

Affiliation:

1. College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China

2. Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China

3. Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China

Abstract

The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.

Funder

National Key Research and Development Program of China

Postdoctoral Science Foundation-Funded General Project of Heilongjiang Province

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3