A Causal Regulation Modeling Algorithm for Temporal Events with Application to Escherichia coli’s Aerobic to Anaerobic Transition

Author:

Chen Yigang12ORCID,Mao Runbo1,Xu Jiatong12ORCID,Huang Yixian12ORCID,Xu Jingyi1,Cui Shidong12,Zhu Zihao12,Ji Xiang12,Huang Shenghan12ORCID,Huang Yanzhe1,Huang Hsi-Yuan12ORCID,Yen Shih-Chung12,Lin Yang-Chi-Duang12,Huang Hsien-Da12

Affiliation:

1. School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China

2. Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China

Abstract

Time-series experiments are crucial for understanding the transient and dynamic nature of biological phenomena. These experiments, leveraging advanced classification and clustering algorithms, allow for a deep dive into the cellular processes. However, while these approaches effectively identify patterns and trends within data, they often need to improve in elucidating the causal mechanisms behind these changes. Building on this foundation, our study introduces a novel algorithm for temporal causal signaling modeling, integrating established knowledge networks with sequential gene expression data to elucidate signal transduction pathways over time. Focusing on Escherichia coli’s (E. coli) aerobic to anaerobic transition (AAT), this research marks a significant leap in understanding the organism’s metabolic shifts. By applying our algorithm to a comprehensive E. coli regulatory network and a time-series microarray dataset, we constructed the cross-time point core signaling and regulatory processes of E. coli’s AAT. Through gene expression analysis, we validated the primary regulatory interactions governing this process. We identified a novel regulatory scheme wherein environmentally responsive genes, soxR and oxyR, activate fur, modulating the nitrogen metabolism regulators fnr and nac. This regulatory cascade controls the stress regulators ompR and lrhA, ultimately affecting the cell motility gene flhD, unveiling a novel regulatory axis that elucidates the complex regulatory dynamics during the AAT process. Our approach, merging empirical data with prior knowledge, represents a significant advance in modeling cellular signaling processes, offering a deeper understanding of microbial physiology and its applications in biotechnology.

Funder

Key Program of Guangdong Basic and Applied Basic Research Fund;

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3