Loss of CFTR Reverses Senescence Hallmarks in SARS-CoV-2 Infected Bronchial Epithelial Cells

Author:

Merigo Flavia1ORCID,Lagni Anna2ORCID,Boschi Federico3ORCID,Bernardi Paolo1,Conti Anita1,Plebani Roberto4ORCID,Romano Mario4,Sorio Claudio5ORCID,Lotti Virginia2ORCID,Sbarbati Andrea1

Affiliation:

1. Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy

2. Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy

3. Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy

4. Laboratory of Molecular Medicine, Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy

5. General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy

Abstract

SARS-CoV-2 infection has been recently shown to induce cellular senescence in vivo. A senescence-like phenotype has been reported in cystic fibrosis (CF) cellular models. Since the previously published data highlighted a low impact of SARS-CoV-2 on CFTR-defective cells, here we aimed to investigate the senescence hallmarks in SARS-CoV-2 infection in the context of a loss of CFTR expression/function. We infected WT and CFTR KO 16HBE14o-cells with SARS-CoV-2 and analyzed both the p21 and Ki67 expression using immunohistochemistry and viral and p21 gene expression using real-time PCR. Prior to SARS-CoV-2 infection, CFTR KO cells displayed a higher p21 and lower Ki67 expression than WT cells. We detected lipid accumulation in CFTR KO cells, identified as lipolysosomes and residual bodies at the subcellular/ultrastructure level. After SARS-CoV-2 infection, the situation reversed, with low p21 and high Ki67 expression, as well as reduced viral gene expression in CFTR KO cells. Thus, the activation of cellular senescence pathways in CFTR-defective cells was reversed by SARS-CoV-2 infection while they were activated in CFTR WT cells. These data uncover a different response of CF and non-CF bronchial epithelial cell models to SARS-CoV-2 infection and contribute to uncovering the molecular mechanisms behind the reduced clinical impact of COVID-19 in CF patients.

Funder

Department of Neuroscience, Biomedicine and Movement Sciences of the University of Verona

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3