Affiliation:
1. School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
2. Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
Abstract
The disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep−/−) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep−/− mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The β-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.
Funder
National Natural Science Foundation of China
Medical Health Science and Technology Project of Zhejiang Provincial Health Commission
Zhejiang Provincial College Student Science and Technology Innovation Projects
2023 College Student Innovation and Entrepreneurship Training Program