CO2 Removal in Hydrogen Production Plants

Author:

Moioli Stefania1ORCID,Pellegrini Laura A.1

Affiliation:

1. GASP—Group on Advanced Separation Processes & GAS Processing, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

Abstract

Hydrogen is an industrial raw material both for the production of chemicals and for oil refining with hydrotreating. It is the subject of increasing attention for its possible use as an energy carrier and as a flexible energy storage medium. Its production is generally accomplished in Steam Methane Reforming (SMR) plants, where a gaseous mixture of CO and H2, with a limited number of other species, is obtained. The process of production and purification generates relevant amounts of carbon dioxide, which needs to be removed due to downstream process requirements or to limit its emissions to the atmosphere. A work by IEAGHG focused on the study of a state-of-the-art Steam Methane Reforming plant producing 100 kNm3/h of H2 and considered chemical absorption with MethylDiEthanolAmine (MDEA) solvent for removing carbon dioxide from the PSA tail gas in a baseline scheme composed of the absorber, one flash vessel and the regeneration column. This type of process is characterized by high energy consumption, in particular at the reboiler of the regeneration column, usually operated by employing steam, and modifications to the baseline scheme can allow for a reduction of the operating costs, though with an increase in the complexity of the plant. This work analyses three configurations of the treatment section of the off gas obtained after the purification of the hydrogen stream in the Pressure Swing Adsorption unit with the aim of selecting the one which minimizes the overall costs so as to further enhance Carbon Capture and Storage in non-power industries as well.

Publisher

MDPI AG

Reference73 articles.

1. CO2 removal by PSA: An industrial view on opportunities and challenges;Voss;Adsorption,2014

2. IEA (2024, April 15). The Future of Hydrogen. Available online: https://www.iea.org/reports/the-future-of-hydrogen.

3. A review of four case studies assessing the potential for hydrogen penetration of the future energy system;Chapman;Int. J. Hydrogen Energy,2019

4. Recent challenges of hydrogen storage technologies for fuel cell vehicles;Mori;Int. J. Hydrogen Energy,2009

5. The future of hydrogen—Opportunities and challenges;Ball;Int. J. Hydrogen Energy,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3