Fault Diagnosis of Hydropower Units Based on Gramian Angular Summation Field and Parallel CNN

Author:

Li Xiang1,Zhang Jianbo1,Xiao Boyi1,Zeng Yun1ORCID,Lv Shunli1,Qian Jing1ORCID,Du Zhaorui2

Affiliation:

1. School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Changchun Thermal Power Plant of Huaneng Jilin Power Generation Co., Changchun 130022, China

Abstract

To enhance the operational efficiency and fault detection accuracy of hydroelectric units, this paper proposes a parallel convolutional neural network model that integrates the Gramian angular summation field (GASF) with an Improved coati optimization algorithm–parallel convolutional neural network (ICOA-PCNN). Additionally, to further improve the model’s accuracy in fault identification, a multi-head self-attention mechanism (MSA) and support vector machine (SVM) are introduced for a secondary optimization of the model. Initially, the GASF technique converts one-dimensional time series signals into two-dimensional images, and a COA-CNN dual-branch model is established for feature extraction. To address the issues of uneven population distribution and susceptibility to local optima in the COA algorithm, various optimization strategies are implemented to improve its global search capability. Experimental results indicate that the accuracy of this model reaches 100%, significantly surpassing other nonoptimized models. This research provides a valuable addition to fault diagnosis technology for modern hydroelectric units.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3