Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection

Author:

Amiri Ahmed Faris12ORCID,Chouder Aissa1,Oudira Houcine1,Silvestre Santiago3ORCID,Kichou Sofiane4ORCID

Affiliation:

1. Laboratory of Electrical Engineering (LGE), Electronic Department, University of M’sila, P.O. Box 166 Ichebilia, M’sila 28000, Algeria

2. Laboratory of Signal and System Analysis (LASS), Electronic Department, University of M’sila, P.O. Box 1667 Ichebilia, M’sila 28000, Algeria

3. Department of Electronic Engineering, Universitat Politècnica de Catalunya (UPC), Mòdul C5 Campus Nord UPC, Jordi Girona 1-3, 08034 Barcelona, Spain

4. University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 1024 Třinecká St., 27343 Buštěhrad, Czech Republic

Abstract

This work identifies the most effective machine learning techniques and supervised learning models to estimate power output from photovoltaic (PV) plants precisely. The performance of various regression models is analyzed by harnessing experimental data, including Random Forest regressor, Support Vector regression (SVR), Multi-layer Perceptron regressor (MLP), Linear regressor (LR), Gradient Boosting, k-Nearest Neighbors regressor (KNN), Ridge regressor (Rr), Lasso regressor (Lsr), Polynomial regressor (Plr) and XGBoost regressor (XGB). The methodology applied starts with meticulous data preprocessing steps to ensure dataset integrity. Following the preprocessing phase, which entails eliminating missing values and outliers using Isolation Feature selection based on a correlation threshold is performed to identify relevant parameters for accurate prediction in PV systems. Subsequently, Isolation Forest is employed for outlier detection, followed by model training and evaluation using key performance metrics such as Root-Mean-Squared Error (RMSE), Normalized Root-Mean-Squared Error (NRMSE), Mean Absolute Error (MAE), and R-squared (R2), Integral Absolute Error (IAE), and Standard Deviation of the Difference (SDD). Among the models evaluated, Random Forest emerges as the top performer, highlighting promising results with an RMSE of 19.413, NRMSE of 0.048%, and an R2 score of 0.968. Furthermore, the Random Forest regressor (the best-performing model) is integrated into a MATLAB application for real-time predictions, enhancing its usability and accessibility for a wide range of applications in renewable energy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3