Preparation and Characterization of Preformed Polyelectrolyte and Polyampholyte Gel Particles for Plugging of High-Permeability Porous Media

Author:

Yelemessova Gulnur1,Gussenov Iskander23,Ayazbayeva Aigerim2ORCID,Shakhvorostov Alexey2,Orazzhanova Lyazzat1,Klivenko Alexey12ORCID,Kudaibergenov Sarkyt2ORCID

Affiliation:

1. Department of Chemistry and Ecology, Research School of Physical and Chemical Sciences, Shakarim University of Semey, Semey 071412, Kazakhstan

2. Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan

3. Department of Chemical and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan

Abstract

Excessive reservoir water poses significant challenges in the oil and gas industry by diminishing hydrocarbon recovery efficiency and generating environmental and economic complications. Conventional polymer flooding techniques, although beneficial, often prove inadequate under conditions of elevated temperature and salinity, highlighting the need for more resilient materials. In this research, two types of acrylamide-based preformed particle gels (PPGs) were synthesized, as follows: polyelectrolyte and polyampholyte. These PPGs were engineered to improve plugging efficiency and endure extreme reservoir environments. The polyelectrolyte gels were synthesized using acrylamide (AAm) and sodium acrylate (SA), while the polyampholyte gels incorporated AAm, AMPS, and APTAC, with crosslinking achieved through MBAA. The swelling properties, modulated by temperature, salinity, and pH, were evaluated using the Ritger–Peppas and Yavari–Azizian models. The mechanical characteristics and surface morphology of the gels were analyzed using SEM and BET techniques. In sand pack experiments designed to mimic high-permeability reservoirs, the inclusion of 0.5 wt.% of fine PPGs substantially reduced water permeability, outperforming traditional hydrogels. Notably, the polyampholyte PPGs demonstrated superior resilience and efficacy in plugging. However, the experiments were limited by the low test temperature (25 °C) and brine salinity (26.6 g/L). Future investigations will aim to apply these PPGs in high-temperature, fractured carbonate reservoirs.

Funder

Science Committee of the Ministry of Science and High Education of the Republic of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3