The Influence of the Structural Architecture on the Swelling Kinetics and the Network Behavior of Sodium-Alginate-Based Hydrogels Cross-Linked with Ionizing Radiation

Author:

Călina Ion1ORCID,Demeter Maria1ORCID,Crăciun Gabriela1,Scărișoreanu Anca1,Mănăilă Elena1

Affiliation:

1. Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania

Abstract

The present work discusses the influence of the structural architecture of sodium alginate–co-acrylic acid–poly(ethylene) oxide hydrogels, crosslinked through electron beam (e-beam) radiation processing. The most important properties of the hydrogels were studied in detail to identify a correlation between the architecture of the hydrogels and their properties. Furthermore, the effect of sodium alginate (NaAlg) concentration, the amounts of the polymer blend, and the size of the samples on hydrogel properties were investigated. The results show that the hydrogels cross-linked (0.5% and 1% NaAlg) with 12.5 kGy exhibit improved physicochemical properties. High gel fraction levels (exceeding 83.5–93.7%) were achieved. Smaller hydrogel diameter (7 mm) contributed to a maximum swelling rate and degree of 20.440%. The hydrogel network was dependent on the hydrogels’ diameter and the amount of polymer blend used. The hydrogels best suited the first-order rate constants and exhibited a non-Fickian diffusion character with diffusion exponent values greater than 0.5. This study indicates that the cross-linked hydrogel has good properties, particularly because of its high degree of swelling and extensive stability (more than 180 h) in water. These findings show that hydrogels can be effectively applied to the purification of water contaminated with metals, dyes, or even pharmaceuticals, as well as materials with a gradual release of bioactive chemicals and water retention.

Funder

Ministry of Research, Innovation, and Digitization, CNCS–UEFISCDI

Romanian Ministry of Research, Innovation, and Digitalization under the Romanian National Core Program LAPLAS VII

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3