A Novel Biomineralized Collagen Liquid Crystal Hydrogel Possessing Bone-like Nanostructures by Complete In Vitro Fabrication

Author:

Li Xiaoting1,Wang Qiaoying1,Wei Qingrong2ORCID

Affiliation:

1. School of Medicine and Nursing, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingjiang Avenue, Leshan 614000, China

2. National Engineering Research Center for Biomaterials (NERCB), College of Biomedical Engineering, Sichuan University, Chengdu 610065, China

Abstract

The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid crystal hydrogel (CLCH) with the application of a polymer-induced liquid precursor (PILP) mineralization process. Upon the elevation of pH, the collagen macromolecules within the collagen liquid crystal (CLC) were activated to self-assemble into CLCH, whose fibrils packed into a long and dense fiber bundle in high orientation, emulating the dense-packed matrix of bone. We demonstrated that the fibrillar mineralization of CLCH, leading to a bone-like nanostructured inorganic material part, can be achieved using the PILP crystallization process to pre-mineralize the dense collagen substrates of CLCH with CaCO3, immediately followed by the in situ mineral phase transformation of CaCO3 into weak-crystalline nano-HA. The combination of CLCH with the biomineralization process of PILP, together with the mineral phase transformation, achieved the in vitro simulation of the nanostructures of both the organic extracellular matrix (ECM) and inorganic ECM of bone. This design would constitute a novel idea for the design of three-dimension biomimetic bone-like material blocks for clinical needs.

Funder

the Sichuan Province Key Research and Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3