Coupled Thermally-Enhanced Bioremediation and Renewable Energy Storage System: Conceptual Framework and Modeling Investigation

Author:

Moradi Ali,M. Smits KathleenORCID,O. Sharp Jonathan

Abstract

This paper presents a novel method to couple an environmental bioremediation system with a subsurface renewable energy storage system. This method involves treating unsaturated contaminated soil using in-situ thermally enhanced bioremediation; the thermal system is powered by renewable energy. After remediation goals are achieved, the thermal system can then be used to store renewable energy in the form of heat in the subsurface for later use. This method can be used for enhanced treatment of environmental pollutants for which temperature is considered a limiting factor. For instance, this system can be used at a wide variety of petroleum-related sites that are likely contaminated with hydrocarbons such as oil refineries and facilities with above- and underground storage tanks. In this paper, a case-study example was analyzed using a previously developed numerical model of heat transfer in unsaturated soil. Results demonstrate that coupling energy storage and thermally-enhanced bioremediation systems offer an efficient and sustainable way to achieve desired temperature–moisture distribution in soil that will ultimately enhance the microbial activity.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3