Improved Adaptive Multipoint Optimal Minimum Entropy Deconvolution and Application on Bearing Fault Detection in Random Impulsive Noise Environments

Author:

Wei Yu1,Xu Yuanbo1,Hou Yinlong1,Li Long1

Affiliation:

1. School of Automation, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Abstract

Random impulsive noise is a special kind of noise, which has strong impact features and random disturbances with large amplitude, short duration, and long intervals. This type of noise often displays nonGaussianity, while common background noise obeys Gaussian distribution. Hence, random impulsive noise greatly differs from common background noise, which renders many commonly used approaches in bearing fault diagnosis inapplicable. In this work, we explore the challenge of bearing fault detection in the presence of random impulsive noise. To deal with this issue, an improved adaptive multipoint optimal minimum entropy deconvolution (IAMOMED) is introduced. In this IAMOMED, an envelope autocorrelation function is used to automatically estimate the cyclic impulse period instead of setting an approximate period range. Moreover, the target vector in the original MOMED is rearranged to enhance its practical applicability. Finally, particle swarm optimization is employed to determine the optimal filter length for selection purposes. According to these improvements, IAMOMED is more suitable for detecting bearing fault features in the case of random impulsive noise when compared to the original MOMED. The contrast experiments demonstrate that the proposed IAMOMED technique is capable of effectively identifying fault characteristics from the vibration signal with strong random impulsive noise and, in addition, it can accurately diagnose the fault types. Thus, the proposed method provides an alternative fault detection tool for rotating machinery in the presence of random impulsive noise.

Funder

Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3