Lipopolysaccharide-Induced Nitric Oxide and Prostaglandin E2 Production Is Inhibited by Tellimagrandin II in Mouse and Human Macrophages

Author:

Lin Chun-YuORCID,Kao Shih-Han,Hung Ling-ChienORCID,Chien Hsin-Ju,Wang Wen-HungORCID,Chang Yu-WeiORCID,Chen Yen-Hsu

Abstract

Sepsis develops from a serious microbial infection that causes the immune system to go into overdrive. The major microorganisms that induce sepsis are Gram-negative bacteria with lipopolysaccharide (LPS) in their cell walls. Nitric oxide (NO) and cyclooxygenase-2 (COX-2) are the key factors involved in the LPS-induced pro-inflammatory process. This study aimed to evaluate the effects of polyphenol Tellimagrandin II (TGII) on anti-inflammatory activity and its underlying basic mechanism in murine macrophage cell line RAW 264.7 and human monocyte-derived macrophages. Macrophages with more than 90% cell viability were found in the cytotoxicity assay under 50 μM TGII. Pre- or post-treatment with TGII significantly reduced LPS-induced inducible nitric oxide synthase (NOS2) protein and mRNA expression, reducing LPS-induced COX-2 protein. Downstream of NOS2 and COX-2, NO and prostaglandin E2 (PGE2) were significantly inhibited by TGII. Upstream of NOS2 and COX-2, phospho-p65, c-fos and phospho-c-jun were also reduced after pre-treatment with TGII. Mitogen-activated protein kinases (MAPKs) are also critical to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) stimulation, and phospho-p38 expression was found to have been blocked by TGII. TGII efficiently reduces LPS-induced NO production and its upstream regulatory factors, suggesting that TGII may be a potential therapeutic agent for sepsis and other inflammatory diseases.

Funder

Ministry of Science and Technology, Taiwan

Kaohsiung Medical University

Kaohsiung Medical University Hospital

Kaohsiung Municipal Ta-Tung Hospital

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3