Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty

Author:

Mota Inês F.1ORCID,Antunes Filipa12,Fangueiro Joana F.1,Costa Carina A. E.34ORCID,Rodrigues Alírio E.34ORCID,Pintado Manuela E.1ORCID,Costa Patrícia S.1

Affiliation:

1. CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal

2. Amyris Bio Products Portugal Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal

3. LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

4. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

Lignin has emerged as a promising eco-friendly multifunctional ingredient for cosmetic applications, due to its ability to protect against ultraviolet radiation and its antioxidant and antimicrobial properties. However, its typical dark color and low water solubility limit its application in cosmetics. This study presents a simple process for obtaining light-colored lignin (LCLig) from sugarcane bagasse (SCB) alkaline black liquor, involving an oxidation treatment with hydrogen peroxide, followed by precipitation with sulfuric acid. The physico-chemical characterization, antioxidant and emulsifying potential of LCLig, and determination of its safety and stability in an oil-in-water emulsion were performed. A high-purity lignin (81.6%) with improved water solubility was obtained, as a result of the balance between the total aromatic phenolic units and the carboxylic acids. In addition, the antioxidant and emulsifying capacities of the obtained LCLig were demonstrated. The color reduction treatment did not compromise the safety of lignin for topical cosmetic applications. The emulsion was stable in terms of organoleptic properties (color, pH, and viscosity) and antioxidant activity over 3 months at 4, 25, and 40 °C.

Funder

Fundo Europeu de Desenvolvimento Regional

ALiCE

LSRE-LCM

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3