Glucokinase Variant Proteins Are Resistant to Fasting-Induced Uridine Diphosphate Glucose-Dependent Degradation in Maturity-Onset Diabetes of the Young Type 2 Patients

Author:

Cho Jaeyong1,Horikawa Yukio2ORCID,Oiwa Yuki1,Hosomichi Kazuyoshi3ORCID,Yabe Daisuke24ORCID,Imai Takeshi1ORCID

Affiliation:

1. Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan

2. Departments of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan

3. Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan

4. Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan

Abstract

We previously reported that glucokinase undergoes ubiquitination and subsequent degradation, a process mediated by cereblon, particularly in the presence of uridine diphosphate glucose (UDP-glucose). In this context, we hereby present evidence showcasing the resilience of variant glucokinase proteins of maturity-onset diabetes of the young type 2 (MODY2) against degradation and, concomitantly, their influence on insulin secretion, both in cell lines and in the afflicted MODY2 patient. Hence, glucose-1-phodphate promotes UDP-glucose production by UDP-glucose pyrophosphorylase 2; consequently, UDP-glucose-dependent glucokinase degradation may occur during fasting. Next, we analyzed glucokinase variant proteins from MODY2 or persistent hyperinsulinemic hypoglycemia in infancy (PHHI). Among the eleven MODY2 glucokinase-mutated proteins tested, those with a lower glucose-binding affinity exhibited resistance to UDP-glucose-dependent degradation. Conversely, the glucokinaseA456V-mutated protein from PHHI had a higher glucose affinity and was sensitive to UDP-glucose-dependent degradation. Furthermore, in vitro studies involving UDP-glucose-dependent glucokinase variant proteins and insulin secretion during fasting in Japanese MODY2 patients revealed a strong correlation and a higher coefficient of determination. This suggests that UDP-glucose-dependent glucokinase degradation plays a significant role in the pathogenesis of glucose-homeostasis-related hereditary diseases, such as MODY2 and PHHI.

Funder

Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monogenic diabetes;Diabetology International;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3