Transcriptional Regulation of the Human 5-HT1A Receptor Gene by Lithium: Role of Deaf1 and GSK3β

Author:

Harkin Emerson F.1,Nasrallah Georges1,Le François Brice1,Albert Paul R.1ORCID

Affiliation:

1. Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada

Abstract

Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3β (GSK3β)—a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations—we investigated the role of GSK3β in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3β site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3β activity as detected by the GSK3β-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3β regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.

Funder

Canadian Institutes of Health Research

National Science and Engineering Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3