Transcriptome Analysis Reveals the Molecular Mechanism and Responsive Genes of Waterlogging Stress in Actinidia deliciosa Planch Kiwifruit Plants

Author:

Xing Mengyun1ORCID,Huang Kangkang1,Zhang Chen1,Xi Dujun1,Luo Huifeng1,Pei Jiabo1,Ruan Ruoxin1,Liu Hui1

Affiliation:

1. Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China

Abstract

Waterlogging stress is one of the major natural issues resulting in stunted growth and loss of agricultural productivity. Cultivated kiwifruits are popular for their rich vitamin C content and unique flavor among consumers, while commonly sensitive to waterlogging stress. The wild kiwifruit plants are usually obliged to survive in harsh environments. Here, we carried out a transcriptome analysis by high-throughput RNA sequencing using the root tissues of Actinidia deliciosa (a wild resource with stress-tolerant phenotype) after waterlogging for 0 d, 3 d, and 7 d. Based on the RNA sequencing data, a high number of differentially expressed genes (DEGs) were identified in roots under waterlogging treatment, which were significantly enriched into four biological processes, including stress response, metabolic processes, molecular transport, and mitotic organization, by gene ontology (GO) simplify enrichment analysis. Among these DEGs, the hypoxia-related genes AdADH1 and AdADH2 were correlated well with the contents of acetaldehyde and ethanol, and three transcription factors Acc26216, Acc08443, and Acc16908 were highly correlated with both AdADH1/2 genes and contents of acetaldehyde and ethanol. In addition, we found that there might be an evident difference among the promoter sequences of ADH genes from A. deliciosa and A. chinensis. Taken together, our results provide additional information on the waterlogging response in wild kiwifruit plants.

Funder

Fruit New Varieties Breeding Project of Zhejiang Province

Agricultural Technology Promotion Project of Zhejiang Province

Science and Technology Innovation and Demonstration Promotion Fund of Hangzhou Academy of Agricultural Sciences

Agricultural Science and Technology Cooperation and Innovation Project of Hangzhou in Zhejiang Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3