Lactoferrin-Anchored Tannylated Mesoporous Silica Nanomaterials-Induced Bone Fusion in a Rat Model of Lumbar Spinal Fusion

Author:

Noh Sung Hyun12,Sung Kanghyon3,Byeon Hye Eun4,Kim Sung Eun5ORCID,Kim Keung Nyun16

Affiliation:

1. Department of Neurosurgery, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

2. Department of Neurosurgery, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si 16499, Republic of Korea

3. Department of Orthopedic Surgery, College of Medicine, Korea University, 73, Korea-daero, Seongbuk-gu, Seoul 02841, Republic of Korea

4. Institute of Medical Science, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon-si 16499, Republic of Korea

5. Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea

6. Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

Abstract

Lactoferrin (LF) is a potent antiviral, anti-inflammatory, and antibacterial agent found in cow and human colostrum which acts as an osteogenic growth factor. This study aimed to investigate whether LF-anchored tannylated mesoporous silica nanomaterials (TA-MSN-LF) function as a bone fusion material in a rat model. In this study, we created TA-MSN-LF and measured the effects of low (1 μg) and high (100 μg) TA-MSN-LF concentrations in a spinal fusion animal model. Rats were assigned to four groups in this study: defect, MSN, TA-MSN-LF-low (1 μg/mL), and TA-MSN-LF-high (100 μg/mL). Eight weeks after surgery, a greater amount of radiological fusion was identified in the TA-MSN-LF groups than in the other groups. Hematoxylin and eosin staining showed that new bone fusion was induced in the TA-MSN-LF groups. Additionally, osteocalcin, a marker of bone formation, was detected by immunohistochemistry, and its intensity was induced in the TA-MSN-LF groups. The formation of new vessels was induced in the TA-MSN-LF-high group. We also confirmed an increase in the serum osteocalcin level and the mRNA expression of osteocalcin and osteopontin in the TA-MSN-LF groups. TA-MSN-LF showed effective bone fusion and angiogenesis in rats. We suggest that TA-MSN-LF is a potent material for spinal bone fusion.

Funder

Ajou University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3