A Strainer-Based Platform for the Collection and Immunolabeling of Porcine Epidemic Diarrhea Virus-Infected Porcine Intestinal Organoid

Author:

Liu Yinju1,Tan Jinlong1ORCID,Zhang Nianzhang1,Li Wenhui1,Fu Baoquan1

Affiliation:

1. State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China

Abstract

The development of organoid research has raised new requirements for this methodology. In a previous study, we demonstrated that an emerging protocol achieved the collection, loading, and programmed immunolabeling of mouse intestinal organoids based on a strainer platform. To uncover the applied potential of this novel methodology on organoids from other species, the strainer platform was utilized to characterize the porcine epidemic diarrhea virus (PEDV)-infected porcine intestinal organoid model. Based on a previous study, some steps were changed to improve the efficiency of the assay by simplifying the reagent addition procedure. In addition, we redefined the range of strainer sizes on porcine intestinal organoids, showing that strainers with pore sizes of 40 and 70 μm matched the above protocol well. Notably, the strainer platform was successfully used to label viral proteins, laying the foundation for its application in the visualization of viral infection models. In summary, the potential of the strainer platform for organoid technology was explored further. More extensive exploration of this platform will contribute to the development of organoid technology.

Funder

Innovation Program of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3