Affiliation:
1. State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Public Health of Agriculture Ministry Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
Abstract
The development of organoid research has raised new requirements for this methodology. In a previous study, we demonstrated that an emerging protocol achieved the collection, loading, and programmed immunolabeling of mouse intestinal organoids based on a strainer platform. To uncover the applied potential of this novel methodology on organoids from other species, the strainer platform was utilized to characterize the porcine epidemic diarrhea virus (PEDV)-infected porcine intestinal organoid model. Based on a previous study, some steps were changed to improve the efficiency of the assay by simplifying the reagent addition procedure. In addition, we redefined the range of strainer sizes on porcine intestinal organoids, showing that strainers with pore sizes of 40 and 70 μm matched the above protocol well. Notably, the strainer platform was successfully used to label viral proteins, laying the foundation for its application in the visualization of viral infection models. In summary, the potential of the strainer platform for organoid technology was explored further. More extensive exploration of this platform will contribute to the development of organoid technology.
Funder
Innovation Program of the Chinese Academy of Agricultural Sciences
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis