Pseudomonas aeruginosa-Derived DnaJ Induces the Expression of IL−1β by Engaging the Interplay of p38 and ERK Signaling Pathways in Macrophages

Author:

Kim Dae-Kyum12ORCID,Huh Jin-Won1ORCID,Yu Hyeonseung1,Lee Yeji1,Jin Yongxin3,Ha Un-Hwan12ORCID

Affiliation:

1. Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea

2. Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea

3. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin 300071, China

Abstract

As members of pathogen-associated molecular patterns, bacterial heat shock proteins (HSPs) are widely recognized for their role in initiating innate immune responses. This study aimed to examine the impact of DnaJ, a homolog of HSP40 derived from Pseudomonas aeruginosa (P. aeruginosa), on the regulation of IL−1β expression in macrophages. We demonstrated that DnaJ modulates macrophages to secrete IL−1β by activating NF-κB and MAPK signaling pathways. Specifically, ERK was identified as a positive mediator for IL−1β expression, while p38 acted as a negative mediator. These results suggest that the reciprocal actions of these two crucial MAPKs play a vital role in controlling IL−1β expression. Additionally, the reciprocal actions of MAPKs were found to regulate the activation of inflammasome-related molecules, including vimentin, NLRP3, caspase-1, and GSDMD. Furthermore, our investigation explored the involvement of CD91/CD40 in ERK signaling-mediated IL−1β production from DnaJ-treated macrophages. These findings emphasize the importance of understanding the signaling mechanisms underlying IL−1β induction and suggest the potential utility of DnaJ as an adjuvant for stimulating inflammasome activation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3