Transcriptome-Wide Identification of TCP Transcription Factor Family Members in Pinus massoniana and Their Expression in Regulation of Development and in Response to Stress

Author:

Zhang Mengyang1,Agassin Romaric Hippolyte1ORCID,Huang Zichen1,Wang Dengbao1,Yao Sheng1,Ji Kongshu1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Pinus massoniana is an important coniferous tree species for barren mountain afforestation with enormous ecological and economic significance. It has strong adaptability to the environment. TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors (TFs) play crucial roles in plant stress response, hormone signal transduction, and development processes. At present, TCP TFs have been widely studied in multiple plant species, but research in P. massoniana has not been carried out. In this study, 13 PmTCP TFs were identified from the transcriptomes of P. massoniana. The phylogenetic results revealed that these PmTCP members were divided into two categories: Class I and Class II. Each PmTCP TF contained a conserved TCP domain, and the conserved motif types and numbers were similar in the same subgroup. According to the transcriptional profiling analysis under drought stress conditions, it was found that seven PmTCP genes responded to drought treatment to varying degrees. The qRT-PCR results showed that the majority of PmTCP genes were significantly expressed in the needles and may play a role in the developmental stage. Meanwhile, the PmTCPs could respond to several stresses and hormone treatments at different levels, which may be important for stress resistance. In addition, PmTCP7 and PmTCP12 were nuclear localization proteins, and PmTCP7 was a transcriptional suppressor. These results will help to explore the regulatory factors related to the growth and development of P. massoniana, enhance its stress resistance, and lay the foundation for further exploration of the physiological effects on PmTCPs.

Funder

National Key R&D Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3