Counter-Intuitive Features of Particle Dynamics in Nanopores

Author:

Berezhkovskii Alexander M.1,Bezrukov Sergey M.1

Affiliation:

1. Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

Using the framework of a continuous diffusion model based on the Smoluchowski equation, we analyze particle dynamics in the confinement of a transmembrane nanopore. We briefly review existing analytical results to highlight consequences of interactions between the channel nanopore and the translocating particles. These interactions are described within a minimalistic approach by lumping together multiple physical forces acting on the particle in the pore into a one-dimensional potential of mean force. Such radical simplification allows us to obtain transparent analytical results, often in a simple algebraic form. While most of our findings are quite intuitive, some of them may seem unexpected and even surprising at first glance. The focus is on five examples: (i) attractive interactions between the particles and the nanopore create a potential well and thus cause the particles to spend more time in the pore but, nevertheless, increase their net flux; (ii) if the potential well-describing particle-pore interaction occupies only a part of the pore length, the mean translocation time is a non-monotonic function of the well length, first increasing and then decreasing with the length; (iii) when a rectangular potential well occupies the entire nanopore, the mean particle residence time in the pore is independent of the particle diffusivity inside the pore and depends only on its diffusivity in the bulk; (iv) although in the presence of a potential bias applied to the nanopore the “downhill” particle flux is higher than the “uphill” one, the mean translocation times and their distributions are identical, i.e., independent of the translocation direction; and (v) fast spontaneous gating affects nanopore selectivity when its characteristic time is comparable to that of the particle transport through the pore.

Funder

Intramural Research Program of the NIH, Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3