Study on the Treatment of ITP Mice with IVIG Sourced from Distinct Sex-Special Plasma (DSP-IVIG)

Author:

Zhang Wei1,Yuan Xin1,Wang Zongkui1ORCID,Xu Jixuan1,Ye Shengliang1ORCID,Jiang Peng1,Du Xi1,Liu Fengjuan1,Lin Fangzhao1,Zhang Rong1ORCID,Ma Li1,Li Changqing1

Affiliation:

1. Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China

Abstract

Intravenous immunoglobulin (IVIG) is a first-line drug prepared from human plasma for the treatment of autoimmune diseases (AIDs), especially immune thrombocytopenia (ITP). Significant differences exist in protein types and expression levels between male and female plasma, and the prevalence of autoimmune diseases varies between sexes. The present study seeks to explore potential variations in IVIG sourced from distinct sex-specific plasma (DSP-IVIG), including IVIG sourced from female plasma (F-IVIG), IVIG sourced from male plasma (M-IVIG), and IVIG sourced from a blend of male and female plasma (Mix-IVIG). To address this question, we used an ITP mouse model and a monocyte–macrophage inflammation model treated with DSP IVIG. The analysis of proteomics in mice suggested that the pathogenesis and treatment of ITP may involve FcγRs mediated phagocytosis, apoptosis, Th17, cytokines, chemokines, and more. Key indicators, including the mouse spleen index, CD16+ macrophages, M1, M2, IL-6, IL-27, and IL-13, all indicated that the efficacy in improving ITP was highest for M-IVIG. Subsequent cell experiments revealed that M-IVIG exhibited a more potent ability to inhibit monocyte phagocytosis. It induced more necrotic M2 cells and fewer viable M2, resulting in weaker M2 phagocytosis. M-IVIG also demonstrated superiority in the downregulation of surface makers CD36, CD68, and CD16 on M1 macrophages, a weaker capacity to activate complement, and a stronger binding ability to FcγRs on the THP-1 surface. In summary, DSP-IVIG effectively mitigated inflammation in ITP mice and monocytes and macrophages. However, M-IVIG exhibited advantages in improving the spleen index, regulating the number and typing of M1 and M2 macrophages, and inhibiting macrophage-mediated inflammation compared to F-IVIG and Mix-IVIG.

Funder

Department of Science and Technology of Sichuan Province

CAMS Innovation Fund for Medical Sciences

Scientific Research Project of Sichuan Medical Association

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3