Transfection of Vein Grafts with Early Growth Response Factor-1 Oligodeoxynucleotide Decoy: Effects on Stem-Cell Genes and Toll-like Receptor-Mediated Inflammation

Author:

Mylonas Konstantinos S.1ORCID,Peroulis Michail2,Kapelouzou Alkistis3ORCID

Affiliation:

1. Department of Cardiac Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece

2. Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece

3. Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece

Abstract

The long-term patency of vein grafts is challenged by intimal hyperplasia. We sought to explore the intricate relationships between the transcription factor Egr-1, toll-like receptors (TLRs), and stem cell genes and also assessed oligodeoxynucleotide decoys (ODNs) as a strategy to prevent vein graft failures. A total of 42 New Zealand white rabbits were fed hyperlipidemic chow and classified into three groups. A double-stranded Egr-1 ODN was synthesized and infused in vein grafts prior to anastomosis with the common carotid artery. All vein grafts were retrieved at the conclusion of the predefined experimental period. Real-time quantitative polymerase chain reaction was performed to estimate expression patterns for several genes of interest. MYD88, TLR2-4, TLR8, NF-kB, TNF-α, IFNβ, and IFNγ; chemokines CCL4, CCL20, CCR2; numerous interleukins; and stem cell genes KFL4, NANOG, HOXA5, and HIF1α were universally downregulated in the ODN arm compared with the controls. By understanding these multifaceted interactions, our study offers actionable insights that may pave the way for innovative interventions in vascular reconstructions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3