Vimentin Localization in the Zebrafish Oral Cavity: A Potential Role in Taste Buds Regeneration

Author:

Aragona Marialuisa1ORCID,Porcino Caterina1ORCID,Briglia Marilena1ORCID,Mhalhel Kamel1ORCID,Abbate Francesco1ORCID,Levanti Maria1,Montalbano Giuseppe1ORCID,Laurà Rosaria1,Lauriano Eugenia Rita2,Germanà Antonino1ORCID,Guerrera Maria Cristina1

Affiliation:

1. Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy

2. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy

Abstract

The morphology of the oral cavity of fish is related to their feeding habits. In this context, taste buds are studied for their ability to catch chemical stimuli and their cell renewal capacity. Vimentin RV202 is a protein employed as a marker for mesenchymal cells that can differentiate along different lineages and to self-renew, while Calretinin N-18 is employed as a marker of sensory cells, and ubiquitin is a protein crucial for guiding the fate of stem cells throughout development. In this study, a surface morphology investigation and an immunohistochemical analysis have been conducted. The results of the present study reveal, for the first time, the presence of Vimentin RV202 in a taste bud cell population of zebrafish. Some taste bud cells are just Vimentin RV202-immunoreactive, while in other cells Vimentin RV202 and Calretinin N-18 colocalize. Some taste buds are just reactive to Calretinin N-18. Vimentin RV202-immunoreactive cells have been observed in the connective layer and in the basal portion of the taste buds. The immunoreactivity of ubiquitin was restricted to sensory cells. Further studies are needed to elucidate the role of Vimentin RV202 in the maturation of taste bud cells, its potential involvement in the regeneration of these chemosensory organs, and its eventual synergic work with ubiquitin.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3