Transcriptomic Analysis Reveals Functional Interaction of mRNA-lncRNA-miRNA in Trachinotus ovatus Infected by Cryptocaryon irritans

Author:

Liu Baosuo12,San Lize3,Guo Huayang12ORCID,Zhu Kecheng12ORCID,Zhang Nan12,Yang Jingwen12,Liu Bo12ORCID,Hou Jilun3ORCID,Zhang Dianchang124ORCID

Affiliation:

1. Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China

2. Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China

3. Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China

4. Sanya Tropical Fisheries Research Institute, Sanya 572000, China

Abstract

The skin of Trachinotus ovatus is a crucial component of the mucosal immune system and serves as the primary site of infection by Cryptocaryon irritans. In order to investigate the significant role of skin in C. irritans infection, a comprehensive transcriptome analysis was conducted on skin tissues from the infection group, infection-adjacent group, and infection group compared with the infection-adjacent group (ATT_vs_PER, ADJ_vs_PER, ATT_vs_ADJ). This study identified differentially expressed long non-coding RNAs (DE lncRNAs), microRNAs (DE miRNAs), and differentially expressed genes (DEGs). The prediction of lncRNA target genes was accomplished by utilizing positional relationship (co-location) and expression correlation (co-expression) with protein-coding genes. Subsequently, functional enrichment analysis was conducted on the target genes of differentially expressed lncRNAs, revealing their involvement in signaling pathways such as tight junction, MAPK, and cell adhesion molecules. This study describes the regulatory network of lncRNA-miRNA-mRNA in T. ovatus skin tissue infected with C. irritans. Functional prediction analysis showed that differentially expressed lncRNA and miRNA may regulate the expression of immune genes such as interleukin-8 (il8) to resist the infection of C. irritans. Conducting additional research on these non-coding RNAs will facilitate a deeper understanding of their immune regulatory function in T. ovatus during C. irritans infection. The study of non-coding RNA in this study laid a foundation for revealing the molecular mechanism of the immune system of T. ovatus to respond to the infection of C. irritans. It provided a choice for the molecular breeding of Trachinotus ovatus against C. irritans.

Funder

National Key Research and Development Program of China

Seed Industry Revitalization Project of Special Fund for Rural Revitalization Strategy in Guangdong Province

Marine Fish Culture Industry

Central Public-Interest Scientific Institution Basal Research Fund, CAFS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3