PHB2 Alleviates Neurotoxicity of Prion Peptide PrP106–126 via PINK1/Parkin-Dependent Mitophagy

Author:

Zheng Xiaohui12,Liu Kun12,Xie Qingqing12,Xin Hangkuo12,Chen Wei12,Lin Shengyu12,Feng Danqi12,Zhu Ting12

Affiliation:

1. Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Prion diseases are a group of neurodegenerative diseases characterized by mitochondrial dysfunction and neuronal death. Mitophagy is a selective form of macroautophagy that clears injured mitochondria. Prohibitin 2 (PHB2) has been identified as a novel inner membrane mitophagy receptor that mediates mitophagy. However, the role of PHB2 in prion diseases remains unclear. In this study, we isolated primary cortical neurons from rats and used the neurotoxic prion peptide PrP106–126 as a cell model for prion diseases. We examined the role of PHB2 in PrP106–126-induced mitophagy using Western blotting and immunofluorescence microscopy and assessed the function of PHB2 in PrP106–126-induced neuronal death using the cell viability assay and the TUNEL assay. The results showed that PrP106–126 induced mitochondrial morphological abnormalities and mitophagy in primary cortical neurons. PHB2 was found to be indispensable for PrP106–126-induced mitophagy and was involved in the accumulation of PINK1 and recruitment of Parkin to mitochondria in primary neurons. Additionally, PHB2 depletion exacerbated neuronal cell death induced by PrP106–126, whereas the overexpression of PHB2 alleviated PrP106–126 neuronal toxicity. Taken together, this study demonstrated that PHB2 is indispensable for PINK1/Parkin-mediated mitophagy in PrP106–126-treated neurons and protects neurons against the neurotoxicity of the prion peptide.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3