Affiliation:
1. Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
2. Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
Abstract
Reperfusion after ischemia would cause massive myocardial injury, which leads to oxidative stress (OS). Calcium homeostasis imbalance plays an essential role in myocardial OS injury. CaV1.2 calcium channel mediates calcium influx into cardiomyocytes, and its activity is modulated by a region of calpastatin (CAST) domain L, CSL54-64. In this study, the effect of Ahf-caltide, derived from CSL54-64, on myocardial OS injury was investigated. Ahf-caltide decreased the levels of LDH, MDA and ROS and increased heart rate, coronary flow, cell survival and SOD activity during OS. In addition, Ahf-caltide permeated into H9c2 cells and increased CaV1.2, CaVβ2 and CAST levels by inhibiting protein degradation. At different Ca2+ concentrations (25 nM, 10 μM, 1 mM), the binding of CSL to the IQ motif in the C terminus of the CaV1.2 channel was increased in a H2O2 concentration-dependent manner. CSL54-64 was predicted to be responsible for the binding of CSL to CaV1.2. In conclusion, Ahf-caltide exerted a cardioprotective effect on myocardial OS injury by stabilizing CaV1.2 protein expression. Our study, for the first time, proposed that restoring calcium homeostasis by targeting the CaV1.2 calcium channel and its regulating factor CAST could be a novel treatment for myocardial OS injury.
Funder
National Nature Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis