Modular Single-Stage Three-Phase Flyback Differential Inverter for Medium/High-Power Grid Integrated Applications

Author:

Ali Ahmed Ismail M.ORCID,Tuan Cao Anh,Takeshita TakaharuORCID,Sayed Mahmoud A.ORCID,Alaas Zuhair MuhammedORCID

Abstract

This paper proposes a single-stage three-phase modular flyback differential inverter (MFBDI) for medium/high power solar PV grid-integrated applications. The proposed inverter structure consists of parallel modules of flyback DC-DC converters based on the required power level. The MFBDI offers many features for renewable energy applications, such as reduced components, single-stage power processing, high-power density, voltage-boosting property, improved footprint, flexibility with modular extension capability, and galvanic isolation. The proposed inverter has been modelled, designed, and scaled up to the required application rating. A new mathematical model of the proposed MFBDI is presented and analyzed with a time-varying duty-cycle, wide-range of frequency variation, and power balancing in order to display its grid current harmonic orders for grid-tied applications. In addition, an LPF-based harmonic compensation strategy is used for second-order harmonic component (SOHC) compensation. With the help of the compensation technique, the grid current THD is reduced from 36% to 4.6% by diminishing the SOHC from 51% to 0.8%. Moreover, the SOHC compensation technique eliminates third-order harmonic components from the DC input current. In addition, a 15% parameters mismatch has been applied between the flyback parallel modules to confirm the modular operation of the proposed MFBDI under modules divergence. In addition, SiC MOSFETs are used for inverter switches implementation, which decrease the inverter switching losses at high-switching frequency. The proposed MFBDI is verified by using three flyback parallel modules/phase using PSIM/Simulink software, with a rating of 5 kW, 200 V, and 50 kHz switching frequency, as well as experimental environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3