Joint Trajectory Planning, Time and Power Allocation to Maximize Throughput in UAV Network

Author:

Wang Kehao1ORCID,Xu Jiangwei1ORCID,Li Xiaobai2,Liu Pei13ORCID,Cao Hui1,Liu Kezhong4

Affiliation:

1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Air Force Early Warning Academy, Wuhan 430019, China

3. Integrated Computing and Chip Security Sichuan Collaborative Innovation Center, Chengdu University of Information Technology, Chengdu 610059, China

4. School of Navigation, Wuhan University of Technology, Wuhan 430070, China

Abstract

Due to the advantages of strong mobility, flexible deployment, and low cost, unmanned aerial vehicles (UAVs) are widely used in various industries. As a flying relay, UAVs can establish line-of-sight (LOS) links for different scenarios, effectively improving communication quality. In this paper, considering the limited energy budget of UAVs and the existence of multiple jammers, we introduce a simultaneous wireless information and power transfer (SWIPT) technology and study the problems of joint-trajectory planning, time, and power allocation to increase communication performance. Specifically, the network includes multiple UAVs, source nodes (SNs), destination nodes (DNs), and jammers. We assume that the UAVs need to communicate with DNs, the SNs use the SWIPT technology to transmit wireless energy and information to UAVs, and the jammers can interfere with the channel from UAVs to DNs. In this network, our target was to maximize the throughput of DNs by optimizing the UAV’s trajectory, time, and power allocation under the constraints of jammers and the actual motion of UAVs (including UAV energy budget, maximum speed, and anti-collision constraints). Since the formulated problem was non-convex and difficult to solve directly, we first decomposed the original problem into three subproblems. We then solved the subproblems by applying a successive convex optimization technology and a slack variables method. Finally, an efficient joint optimization algorithm was proposed to obtain a sub-optimal solution by using a block coordinate descent method. Simulation results indicated that the proposed algorithm has better performance than the four baseline schemes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

National Key Research and Development Program of China

Integrated Computing and Chip Security Sichuan Collaborative Innovation Center of Chengdu University of Information Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3