The Development of Copper Clad Laminate Horn Antennas for Drone Interferometric Synthetic Aperture Radar

Author:

Carpenter Anthony1ORCID,Lawrence James A.1,Ghail Richard2ORCID,Mason Philippa J.3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU, UK

2. Department of Earth Sciences, Royal Holloway University of London, London TW20 0EX, UK

3. Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK

Abstract

Interferometric synthetic aperture radar (InSAR) is an active remote sensing technique that typically utilises satellite data to quantify Earth surface and structural deformation. Drone InSAR should provide improved spatial-temporal data resolutions and operational flexibility. This necessitates the development of custom radar hardware for drone deployment, including antennas for the transmission and reception of microwave electromagnetic signals. We present the design, simulation, fabrication, and testing of two lightweight and inexpensive copper clad laminate (CCL)/printed circuit board (PCB) horn antennas for C-band radar deployed on the DJI Matrice 600 Pro drone. This is the first demonstration of horn antennas fabricated from CCL, and the first complete overview of antenna development for drone radar applications. The dimensions are optimised for the desired gain and centre frequency of 19 dBi and 5.4 GHz, respectively. The S11, directivity/gain, and half power beam widths (HPBW) are simulated in MATLAB, with the antennas tested in a radio frequency (RF) electromagnetic anechoic chamber using a calibrated vector network analyser (VNA) for comparison. The antennas are highly directive with gains of 15.80 and 16.25 dBi, respectively. The reduction in gain compared to the simulated value is attributed to a resonant frequency shift caused by the brass input feed increasing the electrical dimensions. The measured S11 and azimuth HPBW either meet or exceed the simulated results. A slight performance disparity between the two antennas is attributed to minor artefacts of the manufacturing and testing processes. The incorporation of the antennas into the drone payload is presented. Overall, both antennas satisfy our performance criteria and highlight the potential for CCL/PCB/FR-4 as a lightweight and inexpensive material for custom antenna production in drone radar and other antenna applications.

Funder

EPSRC Centre for Doctoral Training in Nuclear Energy

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of a Drone Development Kit-derived Digital Elevation Model;International Journal of Environment and Geoinformatics;2023-12-26

2. Flexible Pyralux Based Ultra-Wideband Patch Antenna;2023 46th International Spring Seminar on Electronics Technology (ISSE);2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3