Learning to Propose and Refine for Accurate and Robust Tracking via an Alignment Convolution

Author:

Mo Zhiyi12,Li Zhi1

Affiliation:

1. The Guangxi Key Laboratory of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China

2. Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543002, China

Abstract

Precise and robust feature extraction plays a key role in high-performance tracking to analyse the videos from drones, surveillance and automatic driving, etc. However, most existing Siamese network-based trackers mainly focus on constructing complicated network models and refinement strategies, while using comparatively simple and heuristic conventional or deformable convolutions to extract features from the sampling positions that may be far away from a target region. Consequently, the coarsely extracted features may introduce background noise and degrade the tracking performance. To address this issue, we present a propose-and-refine tracker (PRTracker) that combines anchor-free style proposals at the coarse level, and alignment convolution-driven refinement at the fine level. Specifically, at the coarse level, we design an anchor-free model to effectively generate proposals that provide more reliable interested regions for further verifying. At the fine level, an alignment convolution-based refinement strategy is adopted to improve the convolutional sampling positions of the proposals, thus making the classification and regression of them more accurate. Through using alignment convolution, the convolution sampling positions of the proposals can be efficiently and effectively re-localized, thus improving the accuracy of the extracted features. Finally, a simple yet robust target mask is designed to make full use of the initial state of a target to further improve the tracking performance. The proposed PRTracker achieves a competitive performance against six tracking benchmarks (i.e., UAV123, VOT2018, VOT2019, OTB100, NfS and LaSOT) at 75 FPS.

Funder

Guangxi ”Bagui Scholar” Teams

Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing

Guangxi Talent Highland Project of Big Data Intelligence and Application

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3