Affiliation:
1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China
Abstract
When employing remote sensing images, it is challenging to classify vegetation species and ground objects due to the abundance of wetland vegetation species and the high fragmentation of ground objects. Remote sensing images are classified primarily according to their spatial resolution, which significantly impacts the classification accuracy of vegetation species and ground objects. However, there are still some areas for improvement in the study of the effects of spatial resolution and resampling on the classification results. The study area in this paper was the core zone of the Huixian Karst National Wetland Park in Guilin, Guangxi, China. The aerial images (Am) with different spatial resolutions were obtained by utilizing the UAV platform, and resampled images (An) with different spatial resolutions were obtained by utilizing the pixel aggregation method. In order to evaluate the impact of spatial resolutions and resampling on the classification accuracy, the Am and the An were utilized for the classification of vegetation species and ground objects based on the geographic object-based image analysis (GEOBIA) method in addition to various machine learning classifiers. The results showed that: (1) In multi-scale images, both the optimal scale parameter (SP) and the processing time decreased as the spatial resolution diminished in the multi-resolution segmentation process. At the same spatial resolution, the SP of the An was greater than that of the Am. (2) In the case of the Am and the An, the appropriate feature variables were different, and the spectral and texture features in the An were more significant than those in the Am. (3) The classification results of various classifiers in the case of the Am and the An exhibited similar trends for spatial resolutions ranging from 1.2 to 5.9 cm, where the overall classification accuracy increased and then decreased in accordance with the decrease in spatial resolution. Moreover, the classification accuracy of the Am was higher than that of the An. (4) When vegetation species and ground objects were classified at different spatial scales, the classification accuracy differed between the Am and the An.
Funder
Guangxi Science and Technology Base and Talent Project
Major Special Projects of High Resolution Earth Observation System
National Natural Science Foundation of China
Guangxi Key Laboratory of Spatial Information and Geomatics
Research Foundation of Guilin University of Technology
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献