A Sampling-Based Distributed Exploration Method for UAV Cluster in Unknown Environments

Author:

Wang Yue1ORCID,Li Xinpeng1,Zhuang Xing1ORCID,Li Fanyu2,Liang Yutao2

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Rapidly completing the exploration and construction of unknown environments is an important task of a UAV cluster. However, the formulation of an online autonomous exploration strategy based on a real-time detection map is still a problem that needs to be discussed and optimized. In this paper, we propose a distributed unknown environment exploration framework for a UAV cluster that comprehensively considers the path and terminal state gain, which is called the Distributed Next-Best-Path and Terminal (DNBPT) method. This method calculates the gain by comprehensively calculating the new exploration grid brought by the exploration path and the guidance of the terminal state to the unexplored area to guide the UAV’s next decision. We propose a suitable multistep selective sampling method and an improved Discrete Binary Particle Swarm Optimization algorithm for path optimization. The simulation results show that the DNBPT can realize rapid exploration under high coverage conditions in multiple scenes.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safe and Efficient Exploration Path Planning for Unmanned Aerial Vehicle in Forest Environments;Aerospace;2024-07-22

2. Thermal Motion Equivalent Method Application for Multicopter Swarm in Exploration Task;2023 7th International Conference on Information, Control, and Communication Technologies (ICCT);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3