Research on Drone Fault Detection Based on Failure Mode Databases

Author:

Hou Defei1,Su Qingran2ORCID,Song Yi3,Yin Yongfeng4ORCID

Affiliation:

1. School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China

2. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

3. School of Reliability and System Engineering, Beihang University, Beijing 100191, China

4. School of Software, Beihang University, Beijing 100191, China

Abstract

Drones are widely used in a number of key fields and are having a profound impact on all walks of life. Working out how to improve drone safety through fault detection is key to ensuring the smooth execution of tasks. At present, most research focuses on fault detection at the component level as it is not possible to locate faults quickly from the global system state of a UAV. Moreover, most methods are offline detection methods, which cannot achieve real-time monitoring of UAV faults. To remedy this, this paper proposes a fault detection method based on a fault mode database and runtime verification. Firstly, a large body of historical fault information is analyzed to generate a summary of fault modes, including fault modes at the system level. The key safety properties of UAVs during operation are further studied in terms of system-level fault modes. Next, a monitor generation algorithm and code instrumentation framework are designed to monitor whether a certain safety attribute is violated during the operation of a UAV in real time. The experimental results show that the fault detection method proposed in this paper can detect abnormal situations in a timely and accurate manner.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3