OF-FSE: An Efficient Adaptive Equalization for QAM-Based UAV Modulation Systems

Author:

Zhang Luyao1ORCID,Wang Zhongyong2,Zheng Guhan3ORCID

Affiliation:

1. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

3. School of Computing and Communications, Lancaster University, Lancaster LA1 4WA, UK

Abstract

Quadrature amplitude modulation (QAM) is one of the essential components of unmanned 1 aerial vehicle (UAV) communications. However, the output signal accuracy of QAM deteriorates dramatically and even collapses in the case of UAVs in a harsh channel environment. This is due to the fractionally spaced equalization based on the multi-modulus blind equalization algorithm being implemented prior to carrier synchronization in QAM-based UAV modulation systems. The carrier frequency offset from the harsh channel signal thus contributes to the significantly degraded performance of MMA by suffering the fractionally spaced equalization. Therefore, in this paper, a novel offset feedback fractionally spaced equalization architecture for UAVs to eliminate the carrier frequency offset is first proposed. In this architecture, the carrier frequency offset allows estimated and incorporation into the input signal of fractionally spaced equalization to compensate for the offset. Moreover, a new multi-modulus decision-directed algorithm is presented for the novel architecture to improve the received signal accuracy of UAVs further. It enables adaptive optimization of the convergence process in accordance with the dynamic UAV communication environment employing the multi-modulus blind equalization algorithm and decision-directed blind equalization algorithm (MDD). Simulation results demonstrate the effectiveness of the OF-FSE framework in enabling the QAM-based UAV modulation systems operation in harsh channel scenarios. Moreover, the performance of the presented new MDD algorithm compared with baseline approaches is also confirmed.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3