Joint Beamforming and Phase Shift Design for Hybrid IRS and UAV-Aided Directional Modulation Networks

Author:

Dong Rongen1ORCID,He Hangjia2,Shu Feng12ORCID,Zhang Qi1,Chen Riqing3,Yan Shihao4,Wang Jiangzhou5

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

2. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

3. Digital Fujian Institute of Big Data for Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. School of Science and Security Research Institute, Edith Cowan University, Perth, WA 6027, Australia

5. School of Engineering, University of Kent, Canterbury CT2 7NT, UK

Abstract

Recently, intelligent reflecting surfaces (IRSs) and unmanned aerial vehicles (UAVs) have been integrated into wireless communication systems to enhance the performance of air–ground transmission. To balance performance, cost, and power consumption well, a hybrid IRS and UAV-assisted directional modulation (DM) network is investigated in this paper in which the hybrid IRS consisted of passive and active reflecting elements. We aimed to maximize the achievable rate by jointly designing the beamforming and phase shift matrix (PSM) of the hybrid IRS subject to the power and unit-modulus constraints of passive IRS phase shifts. To solve the non-convex optimization problem, a high-performance scheme based on successive convex approximation and fractional programming (FP) called the maximal signal-to-noise ratio (SNR)-FP (Max-SNR-FP) is proposed. Given its high complexity, we propose a low-complexity maximal SNR-equal amplitude reflecting (EAR) (Max-SNR-EAR) scheme based on the maximal signal-to-leakage-noise ratio method, and the criteria of phase alignment and EAR. Given that the active and passive IRS phase shift matrices of both schemes are optimized separately, to investigate the effect of jointly optimizing them to improve the achievable rate, a maximal SNR majorization-minimization (MM) (Max-SNR-MM) scheme using the MM criterion to design the IRS PSM is proposed. Simulation results show that the rates harvested by the three proposed methods were slightly lower than those of the active IRS with higher power consumption, which were 35% higher than those of no IRS and random phase IRS, while passive IRS achieved only about a 17% rate gain over the latter. Moreover, compared with the Max-SNR-FP, the proposed Max-SNR-EAR and Max-SNR-MM methods caused obvious complexity degradation at the price of slight performance loss.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3