SGGTSO: A Spherical Vector-Based Optimization Algorithm for 3D UAV Path Planning

Author:

Wang Wentao1ORCID,Ye Chen2,Tian Jun1

Affiliation:

1. College of Software, Nankai University, Tianjin 300071, China

2. School of Computer and Information Engineering, Jiangxi Agriculture University, Nanchang 330045, China

Abstract

The application of 3D UAV path planning algorithms in smart cities and smart buildings can improve logistics efficiency, enhance emergency response capabilities as well as provide services such as indoor navigation, thus bringing more convenience and safety to people’s lives and work. The main idea of the 3D UAV path planning problem is how to plan to get an optimal flight path while ensuring that the UAV does not collide with obstacles during flight. This paper transforms the 3D UAV path planning problem into a multi-constrained optimization problem by formulating the path length cost function, the safety cost function, the flight altitude cost function and the smoothness cost function. This paper encodes each feasible flight path as a set of vectors consisting of magnitude, elevation and azimuth angles and searches for the optimal flight path in the configuration space by means of a metaheuristic algorithm. Subsequently, this paper proposes an improved tuna swarm optimization algorithm based on a sigmoid nonlinear weighting strategy, multi-subgroup Gaussian mutation operator and elite individual genetic strategy, called SGGTSO. Finally, the SGGTSO algorithm is compared with some other classical and novel metaheuristics in a 3D UAV path planning problem with nine different terrain scenarios and in the CEC2017 test function set. The comparison results show that the flight path planned by the SGGTSO algorithm significantly outperforms other comparison algorithms in nine different terrain scenarios, and the optimization performance of SGGTSO outperforms other comparison algorithms in 24 CEC2017 test functions.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3