Sliding-Mode Control for Flight Stability of Quadrotor Drone Using Adaptive Super-Twisting Reaching Law

Author:

Ahn Hyeongki1ORCID,Hu Mingyuan2ORCID,Chung Yoonuh1,You Kwanho12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. Department of Smart Fab. Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

In this study, a sliding-mode controller is designed using an adaptive reaching law with a super-twisting algorithm. A dynamic model of a drone is designed with a quadrotor that has four motors and considers disturbances and model uncertainties. Given that the drone operates as an under-actuated system, its flight stability and maneuverability are influenced by the discontinuous signal produced by the reaching law of the sliding-mode control. Therefore, this study aims to improve the sliding-mode control and stability of drone flight using the proposed adaptive law, which is based on exponential properties. The discontinuous signal of a conventional strategy is overcome using the super-twisting algorithm, and the drone rapidly reaches equilibrium using the proposed adaptive law that utilizes the sliding surface value. The proposed control strategy covers a higher dimension than the conventional sliding-mode control strategy; the system stability is proven using the strict Lyapunov function. The reaching time estimation results are introduced and used to compare the respective reaching times of the control strategies. To verify the superior performance of the proposed control method, multiple experiments are conducted under various situations and realizations. The simulation results prove that the proposed control method achieved a superior rapid response, stable maneuvering, and robustness with shorter reaching time.

Funder

Korea Government

BK21 FOUR Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3