AGCosPlace: A UAV Visual Positioning Algorithm Based on Transformer

Author:

Guo Ya1,Zhou Yatong1,Yang Fan1

Affiliation:

1. School of Electronic and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, China

Abstract

To address the limitation and obtain the position of the drone even when the relative poses and intrinsics of the drone camera are unknown, a visual positioning algorithm based on image retrieval called AGCosPlace, which leverages the Transformer architecture to achieve improved performance, is proposed. Our approach involves subjecting the feature map of the backbone to an encoding operation that incorporates attention mechanisms, multi-layer perceptron coding, and a graph network module. This encoding operation allows for better aggregation of the context information present in the image. Subsequently, the aggregation module with dynamic adaptive pooling produces a descriptor with an appropriate dimensionality, which is then passed into the classifier to recognize the position. Considering the complexity associated with labeling visual positioning labels for UAV images, the visual positioning network is trained using the publicly available Google Street View SF-XL dataset. The performance of the trained network model on a custom UAV perspective test set is evaluated. The experimental results demonstrate that our proposed algorithm, which improves upon the ResNet backbone networks on the SF-XL test set, exhibits excellent performance on the UAV test set. The algorithm achieves notable improvements in the four evaluation metrics: R@1, R@5, R@10, and R@20. These results confirm that the trained visual positioning network can effectively be employed in UAV visual positioning tasks.

Funder

Special Foundation for Beijing Tianjin Hebei Basic Research Cooperation

Inner Mongolia Discipline Inspection and Supervision Big Data Laboratory

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3