Exploring the Impact of Rapidly Actuated Control Surfaces on Drone Aerodynamics

Author:

Panta Ashim1ORCID,Marino Matthew1,Fisher Alex1,Mohamed Abdulghani1ORCID,Watkins Simon1

Affiliation:

1. RMIT UAS Research Laboratory, RMIT University, Bundoora 3083, Australia

Abstract

This study investigates the use of rapidly actuated leading-edge and trailing-edge control surfaces to improve the control authority of small fixed-wing drones. Static and dynamic characteristics were investigated and presented in two separate papers. In this paper, the focus is on the dynamic effects observed from rapidly actuated 30% chord leading- or trailing-edge hinged control surfaces affixed to two flat-plate airfoils. Forces were resolved from surface pressure measurements and are augmented by PIV measurements, smoke flow visualization and analyses. The static study revealed that trailing-edge control surfaces exhibited higher effectiveness in producing time-averaged CL compared to leading-edge control surfaces. However, leading-edge control surfaces exhibit significantly less fluctuation in pressure and lift coefficients at fixed angles of attack and control surface deflections, indicating better stability. Unsteady aerodynamic effects of the airfoil at α=0∘ and “ramp” deflections of trailing- and leading-edge control surfaces from 0∘ to 40∘ with variations in actuation rates showed that CL peaks are approximately three to four times greater than static values for the case of the leading-edge control surface. This has significant implications for fixed-wing drone maneuverability and countering the effects of atmospheric turbulence.

Funder

Australian Post Graduate Award, Australian Federal Government

Early Research Higher Degree Grant, Defence Science Institute

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3