Change Detection Applications in the Earth Sciences Using UAS-Based Sensing: A Review and Future Opportunities

Author:

Andresen Christian G.1,Schultz-Fellenz Emily S.2ORCID

Affiliation:

1. Geography Department, University of Wisconsin Madison, Madison, WI 53706, USA

2. Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

Over the past decade, advancements in collection platforms such as unoccupied aerial systems (UAS), survey-grade GNSS, sensor packages, processing software, and spatial analytical tools have facilitated change detection analyses at an unprecedented resolution over broader spatial and temporal extents and in environments where such investigations present challenges. These technological improvements, coupled with the accessibility and versatility of UAS technology, have pushed the boundaries of spatial and temporal scales in geomorphic change detection. As a result, the cm-scale analysis of topographic signatures can detect and quantify surface anomalies during geomorphic evolution. This review focuses on the use of UAS photogrammetry for fine spatial (cm) and temporal (hours to days) scale geomorphic analyses, and it highlights analytical approaches to detect and quantify surface processes that were previously elusive. The review provides insight into topographic change characterization with precise spatial validations applied to landscape processes in various fields, such as the cryosphere and geosphere, as well as anthropogenic earth processes and national security applications. This work sheds light on previously unexplored aspects of both natural and human-engineered environments, demonstrating the potential of UAS observations in change detection. Our discussion examines the emerging horizons of UAS-based change detection, including machine learning and LIDAR systems. In addition, our meta-analysis of spatial and temporal UAS-based observations highlights the new fine-scale niche of UAS-photogrammetry. This scale advancement sets a new frontier in change detection, offering exciting possibilities for the future of land surface analysis and environmental monitoring in the field of Earth Science.

Funder

University of Wisconsin-Madison, Office of the Vice Chancellor for Research and Graduate Education

Wisconsin Alumni Research Foundation

Laboratory Directed Research and Development program of Los Alamos National Laboratory

National Nuclear Security Administration of U.S. Department of Energy

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3