An Energy-Effective and QoS-Guaranteed Transmission Scheme in UAV-Assisted Heterogeneous Network

Author:

Zhang Jinxi1ORCID,Gao Weidong2,Chuai Gang2,Zhou Zhixiong3ORCID

Affiliation:

1. Beijing Kupei Sports Culture Corporation Limited, Beijing 100091, China

2. Department of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100088, China

Abstract

In this article, we consider a single unmanned aerial vehicle (UAV)-assisted heterogeneous network in a disaster area, which includes a UAV, ground cellular users, and ground sensor users. The cellular data and sensing data are transmitted to UAVs by cellular users and sensor users, due to the outage of the ground wireless network caused by the disaster. In this scenario, we aim to minimize the energy consumption of all the users, to extend their communication time and facilitate rescue. At the same time, cellular users and sensor users have different rate requirements, hence the quality of service (QoS) of the users should be guaranteed. To solve these challenges, we propose an energy-effective relay selection and resource-allocation algorithm. First, to solve the problem of insufficient coverage of the single UAV network, we propose to perform multi-hop transmission for the users outside the UAV’s coverage by selecting suitable relays in an energy-effective manner. Second, for the cellular users and sensor users inside the coverage of the UAV but with different QoS requirements, we design a non-orthogonal multiple access (NOMA)-based transmission scheme to improve spectrum efficiency. Deep reinforcement learning is exploited to dynamically adjust the power level and allocated sub-bands for inside users to reduce energy consumption and improve QoS satisfaction. The simulation results show that the proposed NOMA transmission scheme can achieve 9–17% and 15–32% performance gain on the reduction of transmit power and the improvement of QoS satisfaction, respectively, compared with state-of-the-art NOMA transmission schemes and orthogonal multiple access scheme.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3