Potential-Field-RRT: A Path-Planning Algorithm for UAVs Based on Potential-Field-Oriented Greedy Strategy to Extend Random Tree

Author:

Huang Tai12ORCID,Fan Kuangang234ORCID,Sun Wen12ORCID,Li Weichao23,Guo Haoqi234

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Hongqi Street No. 86, Ganzhou 341000, China

2. Magnetic Suspension Technology Key Laboratory of Jiangxi Province, Jiangxi University of Science and Technology, Hongqi Street No. 86, Ganzhou 341000, China

3. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Hongqi Street No. 86, Ganzhou 341000, China

4. National Rare Earth Functional Material Innovation Center, Huilong Street No. 6, Ganzhou 341000, China

Abstract

This paper proposes a random tree algorithm based on a potential field oriented greedy strategy for the path planning of unmanned aerial vehicles (UAVs). Potential-field-RRT (PF-RRT) discards the defect of traditional artificial potential field (APF) algorithms that are prone to fall into local errors, and introduces potential fields as an aid to the expansion process of random trees. It reasonably triggers a greedy strategy based on the principle of field strength descending gradient optimization, accelerating the process of random tree expansion to a better region and reducing path search time. Compared with other optimization algorithms that improve the sampling method to reduce the search time of the random tree, PF-RRT takes full advantage of the potential field without limiting the arbitrariness of random tree expansion. Secondly, the path construction process is based on the principle of triangle inequality for the root node of the new node to improve the quality of the path in one iteration. Simulation experiments of the algorithm comparison show that the algorithm has the advantages of fast acquisition of high-quality initial path solutions and fast optimal convergence in the path search process. Compared with the original algorithm, obtaining the initial solution using PF-RRT can reduce the time loss by 20% to 70% and improve the path quality by about 25%. In addition, the feasibility of PF-RRT for UAV path planning is demonstrated by actual flight test experiments at the end of the experiment.

Funder

the National Natural Science Foundation of China

the Central Guided Local Science and Technology Funding Project of the Science and Technology Department of Jiangxi Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3