Sliding Mode Controller with Disturbance Observer for Quadcopters; Experiments with Dynamic Disturbances and in Turbulent Indoor Space

Author:

Jing Yutao1ORCID,Mirza Adam1,Sipahi Rifat1ORCID,Martinez-Lorenzo Jose12

Affiliation:

1. Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115, USA

2. Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA

Abstract

In this study, a sliding mode surface controller (SMC) designed for a quadcopter is experimentally tested. The SMC was combined with disturbance observers in six degrees of freedom of the quadcopter to effectively reject external disturbances. While respecting stability conditions all control parameters were automatically initialized and tuned using a simulation-based offline particle swarm optimization (PSO) algorithm, followed by onboard manual fine-tuning. To demonstrate its superiority, the SMC was compared with a PSO-optimized PID controller in terms of agility, stability, and the accurate tracking of hover, rectangular, and figure-eight pattern trajectories. To evaluate its robustness, the SMC controller was extensively tested in a small, enclosed, turbulent space while being subjected to a series of external disturbances, such as hanging payloads and lateral wind.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3