Spatial Variability of Albedo and Net Radiation at Local Scale Using UAV Equipped with Radiation Sensors

Author:

Lindroth Anders1ORCID

Affiliation:

1. Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden

Abstract

Energy balance closure is an important feature in studies of ecosystem exchanges of energy and greenhouse gases using the eddy covariance method. Previous analyses show that this is still a problem with imbalances in the order of 0.6–0.7 to full closure (for only a few sites). It has been suggested that mesoscale transport processes that are not captured by the eddy covariance measurements are the main reason behind the closure problem. So far, very little action has been taken to investigate another potential cause of the problem, namely, the role of spatial variation in net radiation at the scale of typical flux footprints. The reason for this knowledge gap is mainly due to the lack of suitable methods to perform such investigations. Here, we show that such measurements can be performed with an unmanned aerial vehicle equipped with radiation sensors. A comparison using a reference radiometer on a fixed mast with a hovering UAV equipped with pyranometers for incoming and outgoing shortwave radiation and an infrared thermometer for surface temperature measurements shows that incoming and outgoing shortwave radiation can be measured with a standard error of 7.4 Wm−2 and 1.8 Wm−2, respectively. An application of the system was made over a five-year-old forest flux site in Sweden. Here, the net longwave radiation was estimated from the measured surface temperature and the calculated incoming longwave radiation. The results show that during the mission around noon on a clear day, distinct ‘hotspots’ existed over the plantation with the albedo varying between 15.5 and 17.9%, the surface temperature varying between 22.2 and 25.5 °C and the net radiation varying between 330 and 380 Wm−2. These variations are large enough to have a significant impact on the energy balance closure problem. Our conclusion is that we now have the tools to investigate the spatial variability of the radiation regime over flux sites and that this should be given more attention in the future.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference22 articles.

1. The mark of vegetation change on Earth’s surface energy balance;Duveiller;Nat. Commun.,2018

2. Aubinet, M., Vesala, T., and Papale, D. (2012). A Practical Guide to Measurement and Data Analysis, Springer.

3. Energy balance closure at FLUXNET sites;Wilson;Agric. For. Meteorol.,2002

4. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future;Baldocchi;Glob. Chang. Biol.,2003

5. Errors in net radiometry: Comparison and evaluation of six radiometer designs;Halldin;J. Atmos. Ocean. Technol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3