Drone-Based Emergent Distribution of Packages to an Island from a Land Base

Author:

Hu Zhi-Hua1ORCID,Li Tao1,Tian Xi-Dan1ORCID,Wei Yue-He1

Affiliation:

1. Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China

Abstract

An island logistics system is vulnerable in emergency conditions and even isolated from land logistics. Drone-based distribution is an emerging solution investigated in this study to transport packages from a land base to the islands. Considering the drone costs, drone landing platforms in islands, and incorporation into the island ground distribution system, this study categorizes the direct, point-to-point, and cyclic bi-stage distribution modes: in the direct mode, the packages are distributed from the drone base station to the customers directly by drones; in the point-to-point mode, the packages are transported to the drone landing platform and then distributed to the customers independently; in the cyclic mode, the packages are distributed from a drone landing platform by a closed route. The modes are formulated, and evaluation metrics and solution methods are developed. In the experiments based on an island case, the models and solution methods are demonstrated, compared, and analyzed. The cyclic bi-stage distribution mode can improve drone flying distance by 50%, and an iterative heuristic algorithm can further improve drone flying distance by 27.8%, and the ground costs by 3.16%, average for the settings of twenty to sixty customers and two to four drone landing platforms. Based on the modeling and experimental studies, managerial implications and possible extensions are discussed.

Funder

National Social Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3