SunMap: Towards Unattended Maintenance of Photovoltaic Plants Using Drone Photogrammetry

Author:

Hernández-López David1ORCID,Oña Esteban Ruíz de2,Moreno Miguel A.1ORCID,González-Aguilera Diego2ORCID

Affiliation:

1. Institute for Regional Development, University of Castilla la Mancha, Campus Universitario s/n, 02071 Albacete, Spain

2. Department of Cartographic and Land Engineering, Higher Polytechnic School of Avila, University of Salamanca, Hornos Caleros 50, 05003 Avila, Spain

Abstract

Global awareness of environmental issues has boosted interest in renewable energy resources, among which solar energy is one of the most attractive renewable sources. The massive growth of PV plants, both in number and size, has motivated the development of new approaches for their inspection and monitoring. In this paper, a rigorous drone photogrammetry approach using optical Red, Green and Blue (RGB) and Infrared Thermography (IRT) images is applied to detect one of the most common faults (hot spots) in photovoltaic (PV) plants. The latest advances in photogrammetry and computer vision (i.e., Structure from Motion (SfM) and multiview stereo (MVS)), together with advanced and robust analysis of IRT images, are the main elements of the proposed methodology. We developed an in-house software application, SunMap, that allows automatic, accurate, and reliable detection of hot spots on PV panels. Along with the identification and geolocation of malfunctioning PV panels, SunMap provides high-quality cartographic products by means of 3D models and true orthophotos that provide additional support for maintenance operations. Validation of SunMap was performed in two different PV plants located in Spain, generating positive results in the detection and geolocation of anomalies with an error incidence lower than 15% as validated by the manufacturer’s standard electrical tests.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3