Distributed Multi-Target Search and Surveillance Mission Planning for Unmanned Aerial Vehicles in Uncertain Environments

Author:

Zhang Xiao12,Zhao Wenjie12ORCID,Liu Changxuan12,Li Jun12

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310014, China

2. Center for Unmanned Aerial Vehicles, Huanjiang Laboratory, Zhuji 311800, China

Abstract

In this paper, a distributed, autonomous, cooperative mission-planning (DACMP) approach was proposed to focus on the problem of the real-time cooperative searching and surveillance of multiple unmanned aerial vehicles (multi-UAVs) with threats in uncertain and highly dynamic environments. To deal with this problem, a time-varying probabilistic grid graph was designed to represent the perception of a target based on its a priori dynamics. A heuristic search strategy based on pyramidal maps was also proposed. Using map information at different scales makes it easier to integrate local and global information, thereby improving the search capability of UAVs, which has not been previously considered. Moreover, we proposed an adaptive distributed task assignment method for cooperative search and surveillance tasks by considering the UAV motion environment as a potential field and modeling the effects of uncertain maps and targets on candidate solutions through potential field values. The results highlight the advantages of search task execution efficiency. In addition, simulations of different scenarios show that the proposed approach can provide a feasible solution for multiple UAVs in different situations and is flexible and stable in time-sensitive environments.

Funder

1912 project

Key Research and Development Program of Zhejiang Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3