Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios

Author:

Wu Xinning1ORCID,Zhang Mengge1ORCID,Wang Xiangke1ORCID,Zheng Yongbin1ORCID,Yu Huangchao1ORCID

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

The multi-UAV task assignment problem in large-scale group-to-group interception scenarios presents challenges in terms of large computational complexity and the lack of accurate evaluation models. This paper proposes an effective evaluation model and hierarchical task assignment framework to address these challenges. The evaluation model incorporates the dynamics constraints specific to fixed-wing UAVs and improves the Apollonius circle model to accurately describe the cooperative interception effectiveness of multiple UAVs. By evaluating the interception effectiveness during the interception process, the assignment scheme of the multiple UAVs could be given based on the model. To optimize the configuration of UAVs and targets, a hierarchical framework based on the network flow algorithm is employed. This framework utilizes a clustering method based on feature similarity and interception advantage to decompose the large-scale task assignment problem into smaller, complete submodels. Following the assignment, Dubins curves are planned to the optimal interception points, ensuring the effectiveness of the interception task. Simulation results demonstrate the feasibility and effectiveness of the proposed scheme. With the increase in the model scale, the proposed scheme has a greater descending rate of runtime. In a large-scale scenario involving 200 UAVs and 100 targets, the runtime is reduced by 84.86%.

Funder

Science and Technology Innovation Program of Hunan Province

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3